◇◇新语丝(www.xys.org)(xys7.dxiong.com)(xys.ebookdiy.com)(xys2.dropin.org)◇◇ 什么是转基因抗除草剂作物 作者:神秘转基因   在农业生产中,除草剂的使用是必不可少的,它可以消灭农田杂草,从而确 保产量。但是在实际应用中,除草剂不仅可以消灭杂草,还往往导致作物的死亡。 如果有一种作物能够抵抗除草剂,在农民除草的同时确保作物的健康生长,那会 大大简化农业生产的成本,提高农业生产效率。   抗除草剂转基因玉米和转基因大豆的历史可以追溯到上个世纪,从1983年转 基因技术问世以来,科学家们就投入大量精力于此项研究。目前商业化的抗除草 剂作物主要针对于一种叫“草甘膦”的农药,这种农药对杂草杀伤力极强,而且 可以在短时间内分解,不导致农药残留。   “草甘膦”杀死杂草的主要秘诀是:它能有效的与植物叶绿体中的一种关键 酶“EPSPS”结合,从而阻止“EPSPS”参与重要的“有机磷合成”,最终使植物 营养不良,导致植物死亡。   目前看除草剂玉米和大豆主要有三种,分别用三种不同的战术抵抗除草剂:   1, 分身术:科学家们假设,如果植物体内存在大量的“EPSPS”,那么在 “草甘膦”结合组织了一部分之后,还会有大量的“EPSPS”参与“有机磷合 成”,从而达到抵抗除草剂的目的。于是科学家们找到了玉米基因组里负责生产 “EPSPS”的基因,把它提取出来,再用一个高效马达——“强启动子”——驱 动这个基因,再把它转回到玉米(和大豆)体内,这样,新的转基因玉米里 “EPSPS”含量就远远高于普通玉米,也就可以在除草剂杀灭杂草的同时生存下 来。   2, 变身术:植物为了对抗除草剂,往往会自然的变异,产生对除草剂的抗 性。科学家们发现有一个玉米品种产生了对“草甘膦”的抗性,于是科学家们提 取出这个玉米品种体内的“EPSPS”,发现这种抗性玉米的“EPSPS”与其他玉米 不同,它不会与“草甘膦”结合,“草甘膦”也就拿它没办法。于是,科学家把 这种基因提取出来,转入到高产的玉米(和大豆)品种,同时,除草剂的抗性也 就转入了高产玉米品种。   3, “你是猴子请来的救兵吗?”:没错,第三种方法就是请救兵。科学家 们发现细菌可以分解掉“草甘膦”,而且效率很高。于是科学家们就找到了细菌 体内专门负责分解“草甘膦”的cp4 epsps基因,把它转入玉米(和大豆)体内, 于是玉米在遇见“草甘膦”时,就有了救兵,把“草甘膦”分解掉。   目前转基因大豆并不供人类使用,而是用作食用油的提炼,经过食用油的纯 化过程,油脂中不再残留任何蛋白质或者基因产物,可以安全放心食用。   玉米也不用于食用,而是用于生物乙醇的酿造(染料用),生物淀粉(用于 装饰面板或一次性餐盒),牲畜饲料。   编后话:之前有报道,“转基因大豆食用油农药残留”,然后报道就反复侧 面的强调是“转基因大豆”存在农药残留现象。农药残留是农业生产中农药滥用 乱用的结果,这种事情可以发生在任何作物上,而不只是转基因作物。大家应该 仔细思考,切不可听信媒体的侧面丑化言论。 参考文献: ASHIGH, J., CORBETT, C.-A. L., SMITH, P. J., LAPLANTE, J. & TARDIF, F. J. 2009. Characterization and diagnostic tests of resistance to acetohydroxyacid synthase inhibitors due to an Asp376Glu substitution in Amaranthus powellii. Pesticide Biochemistry and Physiology, 95, 38-46. BAERSON, S. R., RODRIGUEZ, D. J., TRAN, M., FENG, Y., BIEST, N. A. & DILL, G. M. 2002. Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Plant physiology, 129, 1265-1275. BECKIE, H. J. 2006. Herbicide-resistant weeds: Management tactics and practices. WEED TECHNOLOGY, 20, 793-814. BECKIE, H. J. 2011. Herbicide‐resistant weed management: focus on glyphosate. Pest Management Science, 67, 1037-1048. BECKIE, H. J., CHANG, F. Y. & STEVENSON, F. C. 1999. The effect of labeling herbicides with their site of action: A Canadian perspective. WEED TECHNOLOGY, 13, 655-661. BORGER, C. P. & HASHEM, A. 2007. Evaluating the double knockdown technique: sequence, application interval, and annual ryegrass growth stage. Crop & Pasture Science, 58, 265-271. BRADSHAW, L. D., PADGETTE, S. R., KIMBALL, S. L. & WELLS, B. H. 1997. Perspectives on glyphosate resistance. WEED TECHNOLOGY, 11, 189-198. BURNET, M. W. M., LOVEYS, B. R., HOLTUM, J. A. M. & POWLES, S. B. 1993. INCREASED DETOXIFICATION IS A MECHANISM OF SIMAZINE RESISTANCE IN LOLIUM-RIGIDUM. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY, 46, 207-218. BURTON, J. D., GRONWALD, J. W., SOMERS, D. A., CONNELLY, J. A., GENGENBACH, B. G. & WYSE, D. L. 1987. Inhibition of plant acetyl-coenzyme A carboxylase by the herbicides sethoxydim and haloxyfop. Biochemical and biophysical research communications, 148, 1039. BURTON, J. D., GRONWALD, J. W., SOMERS, D. A., GENGENBACH, B. G. & WYSE, D. L. 1989. INHIBITION OF CORN ACETYL-COA CARBOXYLASE BY CYCLOHEXANEDIONE AND ARYLOXYPHENOXYPROPIONATE HERBICIDES. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY, 34, 76-85. CRUZ-HIPOLITO, H., OSUNA, M. D., DOMINGUEZ-VALENZUELA, J. A., ESPINOZA, N. & DE PRADO, R. 2011. Mechanism of resistance to ACCase-inhibiting herbicides in wild oat (Avena fatua ) from Latin America. Journal of agricultural and food chemistry, 59, 7261-7267. DINELLI, G., MAROTTI, I., BONETTI, A., CATIZONE, P., URBANO, J. M. & BARNES, J. 2008. Physiological and molecular bases of glyphosate resistance in Conyza bonariensis biotypes from Spain. Weed Research, 48, 257-265. DUKE, S. O. & POWLES, S. B. 2008. Glyphosate: a once-in-a-century herbicide. Pest management science, 64, 319-325. FIELD, L. M. & DEVONSHIRE, A. L. 1991. Gene Amplification and Insecticide Resistance. Annual Review of Entomology, 36, 1-21. FOY, C. L. 1980. Susceptibility of Several Grasses to Glyphosate. Weed Science, 28, 579-585. FRANZ, J. E., MAO, M. K. & SIKORSKI, J. A. 1997. Glyphosate: a unique global herbicide, Washington, DC, American Chemical Society. GAINES, T. A., ZHANG, W., WANG, D., BUKUN, B., CHISHOLM, S. T., SHANER, D. L., NISSEN, S. J., PATZOLDT, W. L., TRANEL, P. J., CULPEPPER, A. S., GREY, T. L., WEBSTER, T. M., VENCILL, W. K., SAMMONS, R. D., JIANG, J., PRESTON, C., LEACH, J. E. & WESTRA, P. 2010. Gene amplification confers glyphosate resistance in Amaranthus palmeri. Proceedings of the National Academy of Sciences of the United States of America, 107, 1029-1034. GE, X., D'AVIGNON, D. A., ACKERMAN, J. J. H. & SAMMONS, R. D. 2010. Rapid vacuolar sequestration: the horseweed glyphosate resistance mechanism. Pest management science, 66, 345-348. GREEN, J. M., HALE, T., PAGANO, M. A., ANDREASSI, J. L. & GUTTERIDGE, S. A. 2009. Response of 98140 Corn with gat4621 and hra Transgenes to Glyphosate and ALS-Inhibiting Herbicides. WEED SCIENCE, 57, 142-148. GREEN, J. M. & OWEN, M. D. K. 2011. Herbicide-resistant crops: utilities and limitations for herbicide-resistant weed management. Journal of agricultural and food chemistry, 59, 5819-5829. GRESSEL, J. 2002. Molecular biology of weed control, London, Taylor & Francis. KAUNDUN, S. S., ZELAYA, I. A., DALE, R. P., LYCETT, A. J., CARTER, P., SHARPIES, K. R. & MCINDOE, E. 2008. Importance of the P106S target-site mutation in conferring resistance to glyphosate in a goosegrass (Eleusine indica) population from the Philippines. WEED SCIENCE, 56, 637-646. KIRKWOOD, R. C., HETHERINGTON, R., REYNOLDS, T. L. & MARSHALL, G. 2000. Absorption, localisation, translocation and activity of glyphosate in barnyardgrass (Echinochloa crus‐galli (L) Beauv): influence of herbicide and surfactant concentration. Pest Management Science, 56, 359-367. KLAUS, M. H. & LISA, M. W. 1999. The shikimate pathway. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 473. KURTH, D. G., GAGO, G. M., DE LA IGLESIA, A., BAZET LYONNET, B., LIN, T.-W., MORBIDONI, H. R., TSAI, S.-C. & GRAMAJO, H. 2009. ACCase 6 is the essential acetyl-CoA carboxylase involved in fatty acid and mycolic acid biosynthesis in mycobacteria. Microbiology (Reading, England), 155, 2664-2675. LEGERE, A., BECKIE, H. J., STEVENSON, F. C. & THOMAS, A. G. 2000. Survey of management practices affecting the occurrence of wild oat (Avena fatua) resistance to acetyl-CoA carboxylase inhibitors. WEED TECHNOLOGY, 14, 366-376. LORRAINE-COLWILL, D. F., POWLES, S. B., HAWKES, T. R., HOLLINSHEAD, P. H., WARNER, S. A. J. & PRESTON, C. 2002. Investigations into the mechanism of glyphosate resistance in Lolium rigidum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY, 74, 62-72. LORRAINE‐COLWILL, D. F., HAWKES, T. R., WILLIAMS, P. H., WARNER, S. A. J., SUTTON, P. B., POWLES, S. B. & PRESTON, C. 1999. Resistance to glyphosate in Lolium rigidum. Pesticide Science, 55, 489-491. MANEECHOTE, C., HOLTUM, J. A. M., PRESTON, C. & POWLES, S. B. 1994. RESISTANT ACETYL-COA CARBOXYLASE IS A MECHANISM OF HERBICIDE RESISTANCE IN A BIOTYPE OF AVENA-STERILIS SSP LUDOVICIANA. PLANT AND CELL PHYSIOLOGY, 35, 627-635. MARLES, M. A. S., DEVINE, M. D. & HALL, J. C. 1993. HERBICIDE RESISTANCE IN SETARIA-VIRIDIS CONFERRED BY A LESS SENSITIVE FORM OF ACETYL COENZYME-A CARBOXYLASE. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY, 46, 7-14. MAZUR, B. J. & FALCO, S. C. 1989. The Development of Herbicide Resistant Crops. Annual Review of Plant Biology, 40, 441-470. OWEN, M. D. K. & ZELAYA, I. A. 2005. Herbicide‐resistant crops and weed resistance to herbicides. Pest Management Science, 61, 301-311. PLINE-SRNIC, W. 2006. Physiological mechanisms of glyphosate resistance. WEED TECHNOLOGY, 20, 290-300. POWLES, S. B. 2010. Gene amplification delivers glyphosate-resistant weed evolution. Proceedings of the National Academy of Sciences of the United States of America, 107, 955-956. POWLES, S. B. & HOLTUM, J. A. M. 1994. Herbicide resistance in plants: biology and biochemistry, Boca Raton, FL, Lewis Publishers. PRESTON, C. 1996. Multiple Resistance to Dissimilar Herbicide Chemistries in a Biotype ofLolium rigidumDue to Enhanced Activity of Several Herbicide Degrading Enzymes. Pesticide Biochemistry and Physiology, 54, 123-134. PRESTON, C., WAKELIN, A. M., DOLMAN, F. C., BOSTAMAM, Y. & BOUTSALIS, P. 2009. A Decade of Glyphosate-Resistant Lolium around the World: Mechanisms, Genes, Fitness, and Agronomic Management. WEED SCIENCE, 57, 435-441. SEEFELDT, S. S., FUERST, E. P., GEALY, D. R., SHUKLA, A., IRZYK, G. P. & DEVINE, M. D. 1996. Mechanisms of resistance to diclofop of two wild oat (Avena fatua) biotypes from the Willamette Valley of Oregon. WEED SCIENCE, 44, 776-781. SHANER, D. L. 2000. The impact of glyphosate‐tolerant crops on the use of other herbicides and on resistance management. Pest Management Science, 56, 320-326. SHANER, D. L. 2009. Role of Translocation as a Mechanism of Resistance to Glyphosate. WEED SCIENCE, 57, 118-123. SHANER, D. L. & O'CONNOR, S. L. 1991. The Imidazolinone herbicides, Boca Raton, CRC Press. STEINRüCKEN, H. C. & AMRHEIN, N. 1980. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvylshikimic acid-3-phosphate synthase. Biochemical and Biophysical Research Communications, 94, 1207-1212. TRANEL, P. J. & WRIGHT, T. R. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned? WEED SCIENCE, 50, 700-712. TREBST, A. 1996. The molecular basis of plant resistance to photosystem II herbicides. WASHINGTON: AMER CHEMICAL SOC. WAKELIN, A. M. & PRESTON, C. 2006. A target‐site mutation is present in a glyphosate‐resistant Lolium rigidum population. Weed Research, 46, 432-440. WALSH, M. J. & POWLES, S. B. 2007. Management strategies for herbicide-resistant weed populations in Australian dryland crop production systems. WEED TECHNOLOGY, 21, 332-338. WERCK-REICHHART, D., HEHN, A. & DIDIERJEAN, L. 2000. Cytochromes P450 for engineering herbicide tolerance. Trends in plant science, 5, 116-123. WU, J., PLINE, W. A. & HATZIOS, K. K. 1999. Effects of Temperature and Chemical Additives on the Response of Transgenic Herbicide-Resistant Soybeans to Glufosinate and Glyphosate Applications. Pesticide Biochemistry and Physiology, 65, 119-119. YU, Q., CAIRNS, A. & POWLES, S. 2007. Glyphosate, paraquat and ACCase multiple herbicide resistance evolved in a Lolium rigidum biotype. Planta, 225, 499-513. ◇◇新语丝(www.xys.org)(xys7.dxiong.com)(xys.ebookdiy.com)(xys2.dropin.org)◇◇